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Abstract

In this paper, we proposed a trigonometrically-fitted fifth order four-step predictor-corrector
method based on the four-step Adams-Bashforth method as predictor and five-step Adams-
Moulton method as corrector to solve linear ordinary differential equations with oscillatory so-
lutions. This method is constructed which exactly integrate initial value problems whose solu-
tions can be expressed as linear combinations of the set functions {sin(υx), cos(υx)} with υ ∈
R, where v represents an approximation of the frequency of the problem. The frequency will
be used in the method to raise the accuracy of the solution. Stability of the proposed method is
examined and the corresponding region of stability is depicted. The new fifth algebraic order
trigonometrically-fitted predictor-corrector method is applied to solve the initial value problems
whose solutions involved trigonometric functions. Numerical results presented proved that the
prospective method is more efficient than the widely used methods for the numerical solution
of linear ordinary differential equations with oscillating solutions.
Keywords: trigonometrically-fitted; fifth order four-step Predictor-Corrector method; Adams-

Bashforth-Moulton method; LODEs; oscillatory solutions.
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1 Introduction

Equation in the form:
y′′(x) = f(x, y), (1)

is used as mathematical models for problems in celestial mechanics, physical chemistry, chemical
physics, quantummechanics, material sciences and many more fields. The above equation which
is usually linear, have oscillatory or periodic solutions and deserves special attention (see [6, 8]).
The focus of the numerical solution of the above equation is the subject of extensive research ac-
tivity over the last two decades (see [14, 7, 22, 20, 19, 21, 3, 13, 17]). Extensive reviews of the
methods developed for the solution of (1) with oscillating behavior can be found in [19, 21] and
the references therein, Ibrahim and Ikhile [7], as well as [1, 13, 17].

To obtain a more accurate numerical results for problem (1), researchers have derived meth-
ods which take into account the nature of the problems to be solved. To do so they used fitting
techniques such as phase-fitting, exponential and trigonometric fitting to enhance the efficiency of
the original method. By doing so more accurate numerical results for highly oscillatory problems
can be obtained. The exponential and trigonometric fitting methodology first proposed by Lyche
[12] is one of the best techniques for designing efficient methods for solving linear first order ini-
tial value problems (IVPs) with periodic solutions. Shokri and et al. [20] developed a new family
of multiderivative methods with vanishing phase-lag for the numerical integration of IVPs with
oscillating solutions. More recently, [3] introduced phase-fitting for finite difference process for
solving IVPs arising in chemistry. Trigonometric fitting technique have also been applied to other
types of predictor-corrector (P-C) methods, such as the work in (see [11]), where they developed
a general class of trigonometrically-fitted two-step hybrid (TFTSH) method for solving second
order IVPs. The original non-trigonometric form of the method was introduced in [2].

In this work, the fifth order Adams P-C method is trigonometrically-fitted and used to solve
second order linear ordinary differential equations (LODEs) with oscillatory solutions, by reduc-
ing the problems to a system of first order IVPs. This paper has been structured as follows: the
derivation of the trigonometric fitting method is given in Section 2. Section 3 is focused on the
stability of the new scheme. The numerical illustrations are given in Section 4, followed by con-
cluding remarks in Section 5.

2 Trigonometrically-fitted fifth algebraic order (P-C) method

The P-C family of methods below has been widely used in obtaining numerical solutions of
first order ODEs see [18]. The methods can be written as,

ȳn+1 = yn + h

k−1∑
i=0

bi∇ifn ,

yn+1 = yn + h

k∑
i=0

βi∇if̄n+1. (2)

In (2) the corrector is always one order higher than the predictor and the total algebraic order
of the system is determined by the corrector’s order. In the general case (2), after expressing the
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backward differences in terms of fn−i. The following fifth algebraic order four-step scheme can
be obtained,

ȳn+1 = yn + h (a0fn + a1fn−1 + a2fn−2 + a3fn−3) ,

yn+1 = yn + h(c0f̄n+1 + c1fn + c2fn−1 + c3fn−2 + c4fn−3), (3)

where, in terms of fn−i, ai, i = 0, 1, 2, 3, are known coefficients of Adams-Bashforth and the coef-
ficients ci, i = 0, 1, 2, 3, 4, correspond to the Adams-Moulton coefficients for (2) above.

In order to ensure the accuracy of the method (3) for any linear combination of functions:{
1, x, x2, cos (±υx), sin(±υx)

}
, (4)

the following system of equations must remain in place:

cos (ω) = 1− c0a0ω2 − c0a1ω2 cos (ω)

−2c0a2ω
2cos (ω)

2

+c0a2ω
2 − 4c0a3ω

2cos (ω)
3

+3c0a3ω
2 cos (ω)

+c2ω sin (ω)

−c4ω sin (ω)

+2c3ω sin (ω) cos (ω)

+4c4ω sin (ω)cos (ω)
2
, (5)

sin (ω) = ω(4cos (ω)
2

sin (ω)ωa3c0

+2 cos (ω) sin (ω)ωa2c0 + 4cos (ω)
3
c4

+ sin (ω)ωa1c0 + sin (ω)ωa3c0

+2cos (ω)
2
c3 + cos (ω)c2 − 3 cos (ω)c4 + c0 + c1 − c3), (6)

where ω = υh, it is noted here that in the above system of equations (5) and (6) are derived from
the requirement thatmethod (3) be accurate for any linear combination of functions, {cos (±υx), sin(±υx)}.

The known coefficients of Adams-Bashforth in terms of fn−i.

a0 =
55

24
, a1 = −59

24
, a2 =

37

24
, a3 = − 9

24
, c0 =

251

720
, c1 =

646

720
, c2 = −264

720
. (7)
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Substituting the coefficients into (5) and (6) and solving for c3 and c4 we have,

c3 = − 1

sin (ω)ω

(
9287

2160
sin (ω)

2
cos (ω)

3
ω2−

14809

4320
sin (ω)

2
cos (ω)

2
ω2 − 9287

8640
sin (ω)

2
cos (ω)ω2−

251

120
sin (ω)

2
cos (ω)

4
ω2 − 11

15
sin (ω) cos (ω)ω+

299

60
sin (ω)cos (ω)

2
ω +

4267

4320
sin (ω)

2
ω2 +

251

180
cos (ω)

2
ω2−

251

120
cos (ω)

6
ω2 +

9287

2160
cos (ω)

5
ω2 − 251

864
cos (ω)

4
ω2−

1255

576
cos (ω)

3
ω2 − 299

240
sin (ω)ω − 251

320
cos (ω)ω2+

4cos (ω)
4 − 4sin (ω)

2
cos (ω)

2
+ sin (ω)

2 − 4cos (ω)
3
+

3 cos (ω)− 3cos (ω)
2
), (8)

c4 =
1

sin(ω)ω

(
−251

240
sin (ω)

2
cos (ω)

3
ω2−

251

240
cos (ω)

5
ω2 +

9287

4320
sin (ω)

2
cos (ω)

2
ω2 +

9287

4320
cos (ω)

4
ω2−

4267

2160
sin (ω)

2
cos (ω)ω2 − 1757

4320
cos (ω)

3
ω2−

4769

8640
cos (ω)

2
ω2 +

251

540
cos (ω)ω2 +

299

120
sin (ω) cos (ω)ω−

251

960
ω2 − 2sin (ω)

2
cos (ω)− 11

30
sin (ω)ω + 2cos (ω)

3−

2cos (ω)
2 − cos (ω) + 1). (9)

To avoid heavy cancellation in the implementation, the following expansions of the Taylor series
should be used,

c3 =
53

360
+

251

320
ω2 − 556649

518400
ω4 +

1518367

4354560
ω6 − 18400003

290304000
ω8+

1449609563

172440576000
ω10 − 705712460059

941525544960000
ω12 + . . . (10)

c4 = − 19

720
− 251

480
ω2 +

127439

518400
ω4 − 6161

194400
ω6 +

192829

41472000
ω8−

19496737

86220288000
ω10 +

14517700489

941525544960000
ω12 + . . . (11)

The local truncation error of the above method is given by,

L.T.E = h6
(

0.34868y(6)n − 0.031692y(5)n + 0.36667ω2y(4)n

)
+O(h7), (12)

where y(4)n is the fourth derivative of y at xn, y(5)n is the fifth derivative of y at xn, and y(6)n is the
sixth derivative of y at xn. We note here that in order to produce Eq. (12)we express the quantities
yn+1, yn−1, yn−2, yn−3 and fn+1, fn−1, fn−2, fn−3 around the point xn and then we substitute the
expressions into Eq. (3).

Sinceω = υh, it can be seen that the trigonometric fittedmethod becomes the original P−Cmethod
for the corresponding algebraic order and step number when υ = 0.
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3 Stability analysis

Applying scheme (3) with the coefficients a0 = 55
24 , a1 = − 59

24 , a2 = 37
24 , a3 = − 9

24 , c0 = 251
720 ,

c1 = 646
720 , c2 = − 264

720 , to the scale test equation,
y′ = λy, (13)

and taking H = λh, the following difference equation is obtained,

yn+1 −A (H) yn +B (H) yn−1 + C (H) yn−2 +D (H) yn−3 = 0, (14)
where,

A (H) = 1 +
299

240
H +

2761

3456
H2, (15)

B (H) = −14809

17280
H2 +

11

30
H, (16)

C (H) =
9287

17280
H2 −Hc3, (17)

D (H) = − 251

1920
H2 −Hc4. (18)

The characteristic equation of (14) shall be given by,
r4 −A (H) r3 +B (H) r2 + C (H) r +D (H) = 0. (19)

Solving the above equation in H using the boundary locus technique [9] and substituting r =
exp(iθ), where i =

√
−1, we can plot the absolute stability regions for 0 ≤ θ ≤ 2π. Fig. 1 shows the

region of absolute stability for the original case and Fig. 2 shows the regions of absolute stability
for the trigonometric fitted case.

As we can see in Fig. 2 the larger the frequency υ, the larger is the absolute stability region. As
a matter of fact, it appears that our trigonometric fitted scheme has enormous gains in absolute
stability. Such very large regions of absolute stability place our scheme in a highly advantageous
position and could therefore be used to solve a much wider range of problems effectively. In
contrast to other comparable methodswithmuch smaller stability regions. Among other things, it
remains to be investigated, for example, until how large υ, the region of absolute stability continues
to grow.

Figure 1: The Absolute Stability Region.

743



M. M. Salih et al. Malaysian J. Math. Sci. 16(4): 739–748 (2022) 739 - 748

Figure 2: The Stability Region with Trigonometric-fitted.

4 Numerical results

In this section, the newmethod is applied to the numerical solution of three problems. The first
is the inhomogeneous equation studied by [15]. The second is a high-frequency Inhomogeneous
system studied by [10] and the third is a high-frequency Inhomogeneous problem studied by [5].
The problems are first reduced to a system of first order ODEs. The test problems are listed below
and the integration interval is [0, 1000].

Problem 1: [15]

y′′ = −100 y + 99 sin(t), y (0) = 1, y′ (0) = 11,

the exact solution is

y = cos (10 t) + sin (10 t) + sin (t) , υ = 10.

Problem 2: [10]

y1
′′ = −13 y1 + 12 y2 + 9 cos (2 t)− 12 sin (2 t) , y1 (0) = 1, y1

′ (0) = −4,

y2
′′ = 12 y1 − 13 y2 − 12 cos (2 t) + 9 sin(2 t), y2 (0) = 0, y2

′ (0) = 8,

the exact solution is

y1 = sin (t)− sin(5 t) + cos (2 t)

y2 = sin (t) + sin (5 t) + sin (2 t) , υ = 5.

Problem 3: [5]

y1
′′ = −400 y1 + 400 e−0.05 t + 0.0025 e−0.05 t, y1 (0) = 1.1, y′1 (0) = −0.05,

y2
′′ = −400 y2 + 400 e−0.05 t + 0.0025 e−0.05 t, y2 (0) = 1.0, y′2 (0) = 1.95,

the exact solution is

y1 = 0.1 cos (20 t) + e−0.05 t

y2 = 0.1 sin (20 t) + e−0.05 t, υ = 20.
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In all our numerical illustrations, the following methods are compared and the following no-
tations are used,

• TF4SPC - The new trigonometrically fitted fifth order four-step predictor-corrector method.
• 4SPC - The original fifth order P-C method specified by (3) that is the method without

trigonometric-fitting.
• TF3SPC - Fourth order trigonometrically fitted three-step predictor-correctormethod in [16].
• EmbDP4(5) - Fifth order embedded Runge-Kutta Dormand-Prince 5(4) method in [4].

Table 1: Comparison between the proposed method and the other current methods for Problem 1.

STEP SIZE(H) METHOD MAX ERRORS
0.0025 TF4SPC 2.3073e-04

4SPC 3.7807e-03
TF3SPC 3.0605e-03

EmbDP4(5) 3.3496e-02
0.00125 TF4SPC 5.7653e-05

4SPC 3.8160e-04
TF3SPC 8.9456e-03

EmbDP4(5) 9.6163e-02
0.001 TF4SPC 3.6917e-06

4SPC 4.9834e-05
TF3SPC 5.2224e-04

EmbDP4(5) 4.2904e-03
0.0005 TF4SPC 9.2288e-07

4SPC 4.9834e-06
TF3SPC 2.4643e-05

EmbDP4(5) 1.0872e-04
0.00025 TF4SPC 2.2721e-08

4SPC 4.9834e-07
TF3SPC 9.7376e-06

EmbDP4(5) 1.7494e-05
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Table 2: Comparison between the proposed method and the other current methods for Problem 2.

STEP SIZE(H) METHOD MAX ERRORS
0.025 TF4SPC 2.2285e-05

4SPC 3.7653e-04
TF3SPC 3.0605e-03

EmbDP4(5) 3.3496e-02
0.0125 TF4SPC 5.9309e-06

4SPC 4.8701e-05
TF3SPC 8.9456e-04

EmbDP4(5) 9.6163e-03
0.01 TF4SPC 3.7987e-06

4SPC 6.1242e-05
TF3SPC 5.2224e-04

EmbDP4(5) 4.2904e-03
0.005 TF4SPC 9.4943e-07

4SPC 4.7416e-06
TF3SPC 2.4643e-05

EmbDP4(5) 1.0872e-04
0.0025 TF4SPC 2.3766e-08

4SPC 2.3042e-07
TF3SPC 9.7376e-06

EmbDP4(5) 1.7494e-05

Table 3: Comparison between the proposed method and the other current methods for Problem 3.

STEP SIZE(H) METHOD MAX ERRORS
0.01 TF4SPC 3.2770e-04

4SPC 1.7022e-03
TF3SPC 6.0999e-03

EmbDP4(5) 3.0549e-02
0.005 TF4SPC 2.3160e-06

4SPC 4.9552e-05
TF3SPC 1.5990e-04

EmbDP4(5) 1.5406e-03
0.025 TF4SPC 1.2495e-07

4SPC 4.9966e-06
TF3SPC 1.3512e-05

EmbDP4(5) 2.3893e-04
0.0125 TF4SPC 3.2643e-08

4SPC 3.7242e-07
TF3SPC 8.2423e-06

EmbDP4(5) 1.4894e-05
0.001 TF4SPC 2.0908e-09

4SPC 3.0002e-08
TF3SPC 1.3284e-07

EmbDP4(5) 2.3824e-06

We expect that the number of function evaluations for TF4SPC and 4SPC are the same because
they are four-step methods, TF3SPC will have a lower number of function evaluations since it is a
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three-step method. Our main focus here is the accuracy of the methods, so we do not tabulate the
number of function evaluations in tables 1-3.

5 Conclusions

From tables 1-3, we observed that the accuracy for the new proposed method is higher by
one order for all the problems and for all the step size chosen compared to the original non-fitted
method. The new proposed scheme has accuracy higher by order two compared to the TF3SPC
method, though the TF3SPC is also a fitted method but it is of algebraic order four. The new
scheme is more accurate compared to the EmbDP4(5) though the EmbDP4(5) method is of the
same algebraic order (order five) as the original 4SPC and the new TF4SPC methods.

Considering the interval of integration is very large, that is [0,1000], we can conclude that
trigonometric-fitting the 4-step predictor corrector method do improved the accuracy of the solu-
tion and hence the method is suitable for solving oscillatory problems.
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